28 research outputs found

    Optimality-based Analysis of XCSF Compaction in Discrete Reinforcement Learning

    Full text link
    Learning classifier systems (LCSs) are population-based predictive systems that were originally envisioned as agents to act in reinforcement learning (RL) environments. These systems can suffer from population bloat and so are amenable to compaction techniques that try to strike a balance between population size and performance. A well-studied LCS architecture is XCSF, which in the RL setting acts as a Q-function approximator. We apply XCSF to a deterministic and stochastic variant of the FrozenLake8x8 environment from OpenAI Gym, with its performance compared in terms of function approximation error and policy accuracy to the optimal Q-functions and policies produced by solving the environments via dynamic programming. We then introduce a novel compaction algorithm (Greedy Niche Mass Compaction - GNMC) and study its operation on XCSF's trained populations. Results show that given a suitable parametrisation, GNMC preserves or even slightly improves function approximation error while yielding a significant reduction in population size. Reasonable preservation of policy accuracy also occurs, and we link this metric to the commonly used steps-to-goal metric in maze-like environments, illustrating how the metrics are complementary rather than competitive

    Substructural Surrogates for Learning Decomposable Classification Problems: Implementation and First Results

    No full text
    This paper presents a learning methodology based on a substructural classification model to solve decomposable classification problems. The proposed method consists of three important components: (1) a structural model that represents salient interactions between attributes for a given data, (2) a surrogate model which provides a functional approximation of the output as a function of attributes, and (3) a classification model which predicts the class for new inputs. The structural model is used to infer the functional form of the surrogate and its coefficients are estimated using linear regression methods. The classification model uses a maximally-accurate, least-complex surrogate to predict the output for given inputs. The structural model that yields an optimal classification model is searched using an iterative greedy search heuristic. Results show that the proposed method successfully detects key variable interactions in hierarchical problems, group them in linkages groups, and build maximally accurate classification models. The initial results on non-trivial hierarchical test problems indicate that the proposed method holds promise and have also shed light on several improvements to enhance the capabilities of the proposed method.

    Modeling Selection Pressure in XCS for Proportionate and Tournament Selection

    No full text
    In this paper, we derive models of the selection pressure in XCS for proportionate (roulette wheel) selection and tournament selection. We show that these models can explain the empirical results that have been previously presented in the literature. We validate the models on simple problems showing that, (i) when the model assumptions hold, the theory perfectly matches the empirical evidence; (ii) when the model assumptions do not hold, the theory can still provide qualitative explanations of the experimental results.
    corecore